Analysis of Hydraulic Turbine using MecaFlux Heliciel

Suppose that we have a stream of water with no head available then for getting power out of it we can just only use the kinetic energy of water.

$$P = \frac{1}{2}\rho A v^3$$

P = Power Available $\rho = Density of Water$ A = Area of Dischargev = Velocity of Water

Suppose we have the stream speed of 4m/s and the depth of stream is only 3m and constant i.e. there is no variation in the depth of stream.

Our purpose is to capture energy from the stream using Hydraulic Turbine with Hydro-Kinetic Propeller.

Now we want to design and analyze the hydraulic turbine according to the given restrictions......

I started surfing on the internet for this specific case. I read many research articles. I came to know about different software designed for Hydro-kinetic type of Hydraulic Turbine like Turbem, HARP etc. If software is free then it's not capable of drawing 3D model. On the other hand, software in which 3D model can be drawn are not free. Then I found a very much friendly software MecaFlux Heliciel and a great news for me on the website of this software company that I can use it freely if I do a partnership

contract with company that I will do work on this and write an article or make a video tutorial. I really appreciate this thought that students who could not pay for the software still they can use it

freely. It's freedom for all.

Then I started to work on it

I found that it can do multiple analysis, calculate forces, draw velocity diagrams and estimate power output and shaft power.

1. Project Specifications

In MecaFlux Heliciel Software, Project Specifications were inserted by selecting type of fluid, temperature of fluid, purpose of installation and velocity of the fluid stream.

1.1 Type of Fluid

Water was selected among the list of Liquids.

One can change the ambient fluid by clicking on the tab on the bottom right side in the figure. This software can also deal with gases too such as air is the fluid in wind turbine.

1	1: Project specifications 🙀 2: Blade geomet	ny 🔐 3: Optimize	🧭 Alerts(3)	Tools (Optional)	🥺 3D p										
	1.1: Fluid 1.2: Goal 1.3: Operating point														
	eau H2														
	press vap sat: 2400Pas.	998.23k													
	viscosity dyn: 0.001004544Pas/sec ²	20%													
	Speed of sound in the fluid in m / sec														
L	1435	Change t	ł												
l															

By clicking on the change the ambient fluid tab, a new window appears where we can select the type of fluid and ambient temperature of the fluid as shown in below figure that water has been selected with temperature of $20 \, {}^{0}$ C.

1.2 Purpose/Goal

As our goal is to capture energy from the fluid stream so third option from the list was selected.

1.3 Operating Conditions

The velocity of the fluid stream can be measured by velocimeter or can be obtained from the nearby gauge station.

And also the propeller rotation can be entered if known but it's not necessary as Heliciel is capable of optimizing the propeller speed of rotation and also the no. of blades.

In our case, velocity is 4m/s as entered shown below.													
1: Project specifications	뎧 2: Blade geometry	P 3: Optimize	🕡 Alerts(3)	Tools (Optional)	😣 3D prototype								
1.1: Fluid 1.2: Goal 1.3: (Operating point												
Enter fluid velocity up m/s: 4 7.775 noeuds 14.400 km/h Enter the volume flow upstream of the prop	ostream of the blade wm3/sec in the duct eller	The incre depressio Ei m	ease in speed c on of Opascals, i fective Velocity /sec 4	aused by a is 0 m/sec r estimated									
3.617343 m3/ Enter propeller rotation 250 prop	/h = 13022.43 n speed if known peller shaft rotation speed	Tangenti rad/sec (rpm) rpm rel	al flow introduce 250 ative	ed =0									
A speed not compatible Use the Optimize tab, se Restore operation p	with the fluid velocity, ca earch for optimum speed, points to the last point of c	n lead to the impo can avoid the imp design	ssible cases ope ossible cases.	erating point (mask	ting blades, torques	or negative thrust)							

2. Blade Design

In blade designing procedure parameters like blade base radius, blade tip radius, chord at the root & tip of blade, blade profile, chord distribution equation, blade materials, no. of blade elements per blade and no. of blades were involved.

2.1 Blade Length

First of all due to the unavailability of large depth of stream a small design of turbine is required.

Blade radius at base can be adjusted and one can change it according to the requirement as rupture in element appears in 3D model sometimes. Similarly chord at the root and tip of blade can be adjusted.

1: Project specifications 🔓 2: Blade g	eometry 🔐 3: Optimize 🥡 Alerts(3) Tools (Op	otional) 😣 3D prototype
2.1: Blade dimensions 2.2: Profiles Law A	dvanced Geometry	
Blade length Base blade radius =25% Of the blade	tip radius Radius mm E [137.5	inter radius at blade tip mm Diameter mm 550 1100
Blade width Char Chord at the root of the blade mm 399,9999	distribution of the blade base distribution Chords b linearize	lade tip chord
Distribution equation: Chord =	1.538489E-09 .r2+ -0.7272734 .r+ 500	Apply the chords equation
Blade thickness imposed by	the constant profile	
Base blade thickness mm	La loi de profil actuellement sélectionnée est "Profil constant". Le profil étant de forme constante, son epaisseur est proportionelle à sa corde.	Tip blade thickness mm
Epaisseur appliquée au pied pale mm 43.84 Thick.Relative=0.110	Epaisseur relative du profil = 0.110 fois la Corde	Epaisseur appliquée au bout pale mm 10.96 Thick.Relative=0.110
	 2.2 Blade Profile Blade profile has two options. 1. Constant Profile 2. Profile Thickness 	
2.1: Blade dimensions 2.2: Profiles	Law Advanced Geometry	
• A) Law "constant	t profile"	
Héliciel apply this pr You can manually se	ofile to all elements of the blade. elect your profile:	Select the default profile
	n0011sc	
Profile relative	thickness = 0.110 times the chord	
O B) Law "profile t	hicknoss"	
Selection of profiles Héliciel selects profil	in a thickness required. es finesse (Cx / Cz) maximum corresponding to the requ	uired thickness better.

In constant profile default profile is selected by clicking the tab on the right side. Heliciel has Interactive profiles database from which one can select with a larger variation in Renoyld's No. i.e., 10000 to 5000000.

In our case n0011sc profile has been selected and Renoyld's no. is 5000000.

🚄 inter	active data base p	rofiles									- 0	×
databa 77rofile	se Search Creati es available: (1832 lir File management d	ng and editing profile nes) database 👻 📈 R	es Coordinates/Cp/ enommer Profil	Bl Lift/Drag ratio -	CL Xfoil Parameters			0.25 0.20 0.15		Camber 0%	position à 6 %	Thickness D.1096
	nom_profil	epaisseur	Re	cz_fmax	f_max	cx_fmax	cm_fma ^	0.10 -				
	n0011sc	0.1097	10000	0.2006	4.25541	0.04714	0.0294	0.05				
	n0011sc	0.1097	50000	0.5718	21.67551	0.02638	-0.0209	-0.05	Center of lift (a	at CL/CDmax):		
	n0011sc	0.1097	100000	0.5249	31.60145	0.01661	-0.0357	-0.10 -	21.7% Of the chi	bid (Re 5000000)		
	n0011sc	0.1097	150000	0.5309	33.26441	0.01596	-0.0379	-0.20 -				
	n0011sc	0.1097	200000	0.6939	36.14062	0.0192	-0.0278	-0.25	2 04	0.6	0.0	10
	n0011sc	0.1097	300000	0.7127	42.67665	0.0167	-0.0321	Profile name	0.4	0.0	0.0	1.0
	n0011sc	0.1097	400000	0.8047	47.5591	0.01692	-0.0289	n0011sc				
	n0011sc	0.1097	500000	0.892	50.8842	0.01753	-0.0248					
	n0011sc	0.1097	600000	0.8604	53.24258	0.01616	-0.0178					
	n0011sc	0.1097	700000	0.9463	55.40398	0.01708	-0.0133		Apply base pr	rofile as forced Elen	nent nb2	
	n0011sc	0.1097	800000	0.8163	56.29655	0.0145	-0.0082					
	n0011sc	0.1097	900000	1.0126	58.87209	0.0172	-0.0045	×				
•	n0011sc	0.1097	1000000	0.8963	60.84861	0.01473	-0.0022			Default profile (pr	ofile law)	
<	n0011sc	0 1097	300000	1 0096	82 21498	0 01228	0 021 ×					
Performa 7 To 10000	ance profile (2D = infi ools change polar 50000 100000	nite length) 	View CD and CL through 360 ° 300000 400000	500000 600000	max lift/draq ratio 141.8 700000 800000 90	angle at max lift/dra 12 00000 1000000 3	^{ag}	嬎 Boundary layer and Co	oeff. pressures			
0.6 0.5 0.4 0.3 0.2 0.1 0.0	CL (coefficient Cd (coefficien	Lift) according (drag) accordi	g attack angles ng attack angle	S 15	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.0 0.8 0.6 0.0 0.8 0.6 0.0 0.8 0.0 0.0 0 20	2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 0.005	01ar CL (vertice 144 142 142 142 144 0 144 0 144 0 0 0 0 0 0 0 0 0 0 0 0 0	al axis) as CD (horiz	ontal axis)	0.040 0.0	45 0.05	0

Also there are two options here wether we want to examine default profile for each element of blade or for specific element of the blade for example in the above figure it is shown that there is an option to select the profile for just blade element no. 2, not for the other elements of blade.

2.3 Blade Material

Blade has been divided into five elements in this case. Blade material can be chosen for all elements of blade or single element of blade just like blade profile. If strength of blade will not be appropriate the red colour will be shown instead of green colour which is shown in the figure.

1: Project specifications	🕞 2: Blade geom	etry 🔐 3: Optimize	🕡 Alerts(3)	Tools (Optional)	3D prototype	
2.1: Blade dimensions 2.2:	Profiles Law Adva	inced Geometry				
Elements structure (parame	ters not recordable)	Shape of blade gen	erator			
Elém.1 Bém.2 Bém.3	Elém.4 Elém.5 nvelopes resistance 1) m					
				~		
Largeur ellipse <mark>43,84</mark>						
longueur ellipse <mark>400</mark>						
Données profil Found optimum profilem Relative thickness elem Thickness polar Reynolds calculated ele Selection Reynolds pola	0011sc vent:0 0.110 ment:1958849 ar:1000000	A Resitance Material of (Al) moules mass/vol = Strength for Strength for	. poids aramatu reinforcement: Al 2710Kg/m3 ng =180Mpa ans =180Mpa	re liages Alúminíum		

3. Optimizing the Design

In optimization, we can find the no. of blades offering best performance, optimum propeller speed and also one can analyze the design by changing no. of blades. Heliciel can also create multi-analysis charts offering various parameters vs fluid speed like thrust, moment, power output, power available according to Betz' Limit, Velocities at exit, Head loss coefficient and cavitation limits etc.

After this multiple analysis the different parameters as described earlier are plotted graphically according to fluid speed as shown below.

And also the values of different parameters at different velocity points can be viewed in the tabular form in the below section as shown.

	🔚 Save 🛛 😡 Enter a torque curve compared															
		V(m/sec)	n(Rpm)	n(Rps)	λ=ω.R/V	Ср	Ct	Torque(Nm)	Thrust(N)	P shaft(W)	P.cin.(W)	delta P(pas)	V.tan.Downstr	V.ax.Downstre	Moment Y(Nm)	head loss coef
	•		188	3.1333	3.609	0.4970	-0.3026	303.0788	4341.686	5966.808	12006.35	-4873.173	-0.8169	0.2051	-125.6626	1.0170
		3.2	188	3.1333	3.384	0.4840	-0.3070	358.2275	4405.144	7052.537	14571.26	-4944.4	-0.8531	0.5054	-129.2149	0.9070
		3.4	188	3.1333	3.185	0.4671	-0.3117	414.6832	4473.09	8163.998	17477.68	-5020.663	-0.8898	0.7989	-133.1277	0.8158
		3.6	188	3.1333	3.008	0.4467	-0.3166	470.793	4543.02	9268.651	20746.97	-5099.154	-0.9250	1.0757	-137.2736	0.7390
		3.8	188	3.1333	2.849	0.4257	-0.3218	527.5633	4617.6	10386.3	24400.46	-5182.864	-0.9606	1.3472	-141.7728	0.6742
		4	188	3.1333	2.707	0.4056	-0.3273	586.2611	4695.818	11541.91	28459.49	-5270.656	-0.9967	1.6164	-146.5628	0.6188
1						1		1							(1

A 3D prototype can be viewed and one can also play with it using commands given in the bottom bar.

For example in the figure below it has been shown the path particles in the fluid stream with green colour.

And also blade tip losses can be viewed as shown in blue color.

5. Heliciel Results

The Delta Pressure & Head Loss Coefficient, Axial Force & Y-axis Moment, Torque around x-axis for single blade are shown in figure.

The comparison among Betz Limit, Power available and Shaft Power output is shown in the form of bar graph.

0.00	5,000.00	10,000.00	15,000.00	20,000.00	25,000.00
			_		28,459.49
0.00					
		11,541.91			

Efficiency is the ratio of shaft power to kinetic which is available power and it is 0.406.

6. Heliciel Calculations per Element of Blade

Heliciel calculates various parameters for individual element of single blade like Lift Coefficient, Drag Coefficient, Lift & Drag Forces, Moment & Thrust, Fluid velocities and angles, blade angles, Strength and Torque about axis Y. These are represented in bar graphs as shown.

CD CL Drag Lift Moments Thrusts Fluid velocity Fluid angles Profiles Angles Strength Pressures Torque axis Y

6.1 Force, Velocity and Angle Diagrams for Each Element

Heliciel is also capable of drawing velocity diagrams with full detailed knowledge of symbols and values of physical quantities. These diagrams are self-explanatory for the students of fluid mechanics. Go to Edit and select diagram of Forces, Velocities and angles.

Study prop	– ō X		
Files Edit	View Prototyping update available: Version9.2.4.4	date 17/11/2015 Parameters	
i 💕 🔓 🛸	convert units		
Fluid v	Convertisseur unités physiques] 1: Project specifications 🍯 2: Blade geometry 🔐 3: Optimize 🜒 Alets(3) Tools (Optional) 😣 3D prototype	🔀 🕕 📃 🔒 phases designs
n/s	multiple analysis	1. Riid 12 Coul 12 Counting saint	⊡- Design phases
fl	Copy current screen	1: Enter project specification 1: Select the ambient fluid	
Advance 🛃	Calculation notes	eau H2O	- 1.2.Check whether the sele
V blade 🖌	Images 2d profiles		⊡ 1.3:Describe the operating p 1.2 A/Enterthe second of
	Plan developed following blade straight generatrix	press vap sat: 2400Pas. 998.23kg/m3	1.3.8:Enter the speed o
1	Diagram of the forces, velocities, and angles	viscosity dyn: 0.001004544Pas/sec ² 20°c	

These Diagrams are shown For Element 1, Element 2, Element 3, Element 4 and Element 5 respectively.

Results & Calculation Notes Summary

For the summary of calcultaions performed for the 5 individual elements of blade, click an icon higlighted mentioning Calculation notes.

A new window will apear representing the summary of all calculations.

- v

-

e cuit	or calculation not	les														6		•
	i 💕 🛃 🎒																	
calcul0																		
Heliciel	Notes Calculation o	of 2/6/2016	10:31:39 PM															^
Study propeller capturing a flow ofeau H2O at 14.400 km/h (2 blades of 0.55 m at 188rpm)																		
The bla The firs The bla	de is divided into 5 t element is located de tip is located at	elements. d at 137.5 550																
Design > Ro > Ro The per	/ blade twist calcula tation speed =4me tation speed =188 formance of this ca	ated at oper eters / secon rotations pe alculation no	ating point det d r minute te is given in t	ermined by: he state:actualise	e_nouveau_point_de	sign												
Torque Propelle Thrust Propelle Kinetic	per blade:293.130 er torque:586.2611 ber blade:2347.90 er thrust:4695.818 energy fluid upstre	16 Nm (rotati 1 Nm (rotatio 9 N (flow dire N (flow dire am propeller	on direction) n direction) ection) ction) :28459.49 W															
Efficien Table o Position	Package and Low Control of the Second Action of the General Rame – Social Control of the Package Action of the Control of the Second Action and fluid speed in degrees										*							
	Position	Radius mr	Chord mm	Apparent and	Apparent+induced	Attack angle	pitch	CL	CD	Finesse	Re polar	Reynolds	Coef axial induct	Coef tangential in	axial induct m s	tangential induct r	F Pran	^
•	Base el. 1(n00	138	400	55.9	37.5	8	29.5	0.8963	0.01473	60.84861	1000000	1919814	0.3009	0.3463	-1.203	0.937	0.995	
	Center el. 1	179	370	48.7	34.0		25.9	0.8963	0.01473	60.84861	1000000	1958849	0.2806	0.2142	-1.122	0.754	0.985	
	Base el.2(n00	220	340	42.7	30.3	8	22.3	0.8963	0.01473	60.84861	1000000	1991941	0.2750	0.1472	-1.100	0.637	0.967	
	Center el.2	261	310	37.9	26.9		19.2	0.8963	0.01473	60.84861	1000000	2007154	0.2755	0.1078	-1.102	0.555	0.944	
	Base el.3(n00	302	280	33.9	24.1	8	16.1	0.8963	0.01473	60.84861	1000000	1996107	0.2777	0.0826	-1.111	0.492	0.913	
	Center el.3	344	250	30.6	21.8		13.9	0.8963	0.01473	60.84861	1000000	1952959	0.2811	0.0654	-1.124	0.442	0.873	
	Base el.4(n00	385	220	27.8	19.7	8	11.7	0.8963	0.01473	60.84861	1000000	1873621	0.2857	0.0531	-1.143	0.403	0.819	
	Center el.4	426	190	25.5	17.9		9.9	0.8963	0.01473	60.84861	1000000	1755192	0.2924	0.0445	-1.170	0.373	0.745	
	Base el. 5(n00	468	160	23.5	16.1	8	8.1	0.8963	0.01473	60.84861	1000000	1595580	0.3101	0.0386	-1.241	0.355	0.645	
	Center el.5	509	130	21.8	13.9		6.5	0.8963	0.01473	60.84861	1000000	1393253	0.3601	0.0367	-1.440	0.368	0.495	
	Tip blade .	550	100	20.3	12.8	8	4.8	0.8963	0.01473	60.84861	1000000	1393253	0.3601	0.0367	-1.440	0.398	0	
*																	<u> </u>	~
<																	>	
C:\Prog	am Files (x86)\heli	iciel software	es (Heliciel \calcu	ul0.nch														